
NIST

PUBLICATIONS

A11107 04^263 NISTIR 7322

REFERENCE

Architecture of the Focus 3D
Telemodeling Tool

Arthur F. Griesser, Ph.D.

<QCs
too

#1312
XooS

NIST
National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce





NISTIR 7322

Architecture of the Focus 3D
Telemodeling Tool

Arthur F. Griesser, Ph.D.

Semiconductor Electronics Devision

Electronics and Electrical Engineering Laboratory

August 2005

U.S. DEPARTMENT OF COMMERCE
Carlos M. Gutierrez, Secretary

TECHNOLOGY ADMINISTRATION
Michelle O ’Neill, Acting Under Secretary ofCommerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
William A. Jeffrey, Director





Architecture of the Focus 3D
Telemodeling Tool

Abstract

A high level design of the Focus 3D modeling tool is presented. Infrastructure components are selected in

the light of the functional and non functional requirements of the Focus project. A description ofhow
these components will fit together is provided, and architectural alternatives are considered.

Table of Contents

Overview 4

Frameworks 4

Change Distribution 5

GUI Toolkit 8

Renderer 8

Tracker 9

Persistence 9

Metamodel 10

Discovery 10

Gesture Interpreter 1

1

Rule Engine 1

1

Command Interpreter 11

Glue 12

Web 12

Fitting It All Together 1

3

Revision History 15

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States. Certain

commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply

recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment

identified are necessarily the best available for the purpose.

1





Overview

The goal of the Focus project is to improve the quality of information transfer standards by providing a

tool which facilitates the collaborative construction of underlying information models. Focus will make

it possible for standards participants all over the world to join together in a virtual space to build concrete

models of information.

Please see the Analysis Catalog for the Focus 3D Telemodeling Tool for a more detailed description of

the Focus project, an analysis class diagram, and a listing of use cases. Please also see the detailed use

cases for further information on the functionality the system provides.

This high level design will discuss individually the various components that will be needed to build the

Focus 3D modeling system and how these components will fit together. Each section describes the

implementations considered for one component. Sections differ in their depth of coverage because

components differ according to their relative importance in this project, the quality of existing

implementations, and the risk perceived in using existing implementations. The final section describes,

with the help of a UML component diagram, how these components interact.

Frameworks

Several virtual reality frameworks were considered as the foundation for Focus.

• Croquet: http://www.opencroquet.org/

• Studierstube: http://www.studierstube.org/

• Tinmith: http://www.tinmith.net/

• Game engines

Unfortunately none of these proved to satisfy the requirements of Focus. Croquet suffered from

relatively poor performance, had problems with firewalls, and lacked a tracking component.

Studierstube seemed to provide everything we needed; if we could have read the German documentation,

and gotten it to run on a unix-based platform, it might have been ideal. Tinmith seemed to be better suited

to augmented reality than augmented virtuality. The game engines either had licensing issues, or were not

quite ready for prime time. Homunculus Flatland 1 and FreeWRL2 were not investigated because they

appear to be less complete.

1 http://www.hpc.unm.edu/homunculus/

2 http://freewrl.sourceforge.net/

1



'



Change Distribution

When one user makes a change to a model, the other users need to see this change in their virtual

environments; somehow these changes need to be shipped around the network. Initially Distributed Open

Inventor (DIV) was considered for change distribution. It proved to be difficult enough to get working

on OS X (the Macintosh operating system) that it was deemed easier to rewrite this functionality than to

fix DIV. Since communications can easily make or break a distributed application, the additional control

over this component obtained by implementing it ourselves is desirable anyway.

The first consideration is the choice of network protocol. The three main choices 3 are:

• Unicast sends information to a specific computer. The sender must separately transmit to each

participant’s computer.

• Broadcast sends information to all computers on the sender’s Local Area Network (LAN). The sender

transmits to a single address, which corresponds to all computers on the LAN.

• Multicast sends information to all computers that have registered with the network to receive data sent

to some multicast address they are interested in. The sender transmits to this single multicast address.

Routers deliver the data to those computers that have registered to receive it. Unfortunately, true

multicasting requires router support. MBone4 is an additional networking layer that allows

multicasting over a unicast network. The Spread Toolkit 5
is an interesting looking interface to

multicast; rb_spread 6 provides a Ruby wrapper for this library. The streaming component of Helix7

might also be useful.

As far as Focus is concerned, broadcast is virtually useless. Multicast appears to be ideal, but we have

little experience with it. Due to its lower bandwidth requirements, multicast will be required when Focus

supports audio and facial video. Model change distribution has much less stringent bandwidth

requirements. Let’s consider one scene graph change: a single scene element is moved and rotated. Each

position requires three spatial coordinates and three orientation coordinates. If each coordinate is

represented by a 64 bit IEEE double precision floating point number, that adds up to 384 bits per

position. Another 16 bits should suffice to specify which element is being moved, for a total of 400 bits.

To avoid the perception of flickering, the effective frame rate must approach the human “flicker fusion

threshold” of about 75 frames per second (fps). A typical motion picture has a frame rate of 24 fps,

which is then interrupted 2 or 3 times per frame to result in 48 or 72 effective fps. We should be able to

implement the same trick, so the motion of one element would require 24 * 400 = 9,600 bits per second

(of course if we can increase the frame rate to 72, so much the better). A 10 Mbps Ethernet connection

3 http://www.tldp.org/HOWTO/Multicast-HOWTO.html

4 http://www.savetz.com/mbone/

5 http://www.spread.org/

6 http://www.omniti.com/~george/rb_spread/

7 https://helixcommunity.org/

2





should be able to support at least 250 moving elements, presuming less than 75 percent of the bandwidth

is wasted by packet overhead and collisions. If an avatar can be adequately represented by a head, torso,

elbow, and hand, an avatar moving a model element consists of five moving scene graph elements. A 10

Mbps network should therefore support scene graph updates for 50 simultaneous modelers if unicast is

used. That’s ample, since, if the modelers were meeting physically, typically only one or two at a time

would be modifying the model.

Having selected unicast for scene graph changes, we need to decide between Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP) change messages. UDP is considerably faster, at the

expense of reliability. If absolute positions and angles are transmitted for each change, instead of deltas,

it would not make much of a difference ifUDP dropped an occasional change; the motion would be

slightly jerkier. Absolute coordinates were presumed in the above bandwidth computation.

Unfortunately, higher level tools often do a poor job of supporting UDP. We will therefore start out with

a TCP based implementation, with the option of falling back to UDP in the unlikely event that

performance becomes enough of an issue.

There are at least two topologies for change distribution:

• Each computer sends its own changes to a hub-like server that distributes the changes to all the other

computers.

• Each computer sends its own changes to all other computers; communications are peer-to-peer, also

called P2P. Of course a central server could still be used to register the peers participating in the

exchange.

Presuming N users, each transmitting B bits worth of changes per second, the central server reduces the

total (input plus output) bandwidth handled by each computer from 2(N-1)B down to NB. If much of the

network stack is handled by the CPU rather than the Network Interface Card (a guess that we have not

substantiated), the server would nearly halve the processor overhead required for networking; this would

free up the CPU for rendering. Of course this is at the expense of the server, which has NNB worth of

total traffic, resulting from NB input and N(N-1)B output. Equating the maximum output bandwidth in

the P2P case (MB, where M=50-l=49) with the maximum server output bandwidth N(N-1)B and solving

for N, we find that a 10 Mbps server would limit the system to about 7 users. Likewise, a 100 Mbps

server could support about 22 users. The number of users should scale linearly with the number ofNICs

(network interface cards) the server can dedicate to sending data, until the switches feeding the server

reach their capacity, or CPU overhead becomes a problem. With a dedicated server, CPU overhead

probably wouldn’t be an issue. Actually it is likely that neither strategy will be necessary. Standards are

usually composed by surprisingly tiny teams. Even in the case of large teams, modeling will probably be

performed (at least initially) by smaller subsets. The main disadvantage of the server is that latency is

doubled by the simplest server implementation, which buffers the entire change before redistribution.

Latency could be reduced by starting output streams as soon as the first input data are available.

There are also two models for controlling the distribution of changes:

• Push, initiated by the computer with the changed scene graph.

• Pull, where each computer interested in receiving changes polls for them.

3



.



Pull is the familiar model used by web browsers, but the required polling can waste resources and

appears inelegant compared to Push. Push can also be thought of as event-driven or publish-subscribe.

When a Focus client begins participating in a modeling session, the client subscribes to scene graph

changes, and the server subscribes to user tracking information used to animate the user’s avatar.

Above the raw socket layer, many remote procedure call implementations are available: SOAP, XML-
RPC, and CORBA are among the most famous. Focus will use the Ruby drb8 library, which provides an

elegant interface for distributed computing (including some support for UDP). Actually there is a danger

drb could make client-server communication too easy. For various sociological (rather than technical)

reasons, it is possible for distributed applications to lose design coherence. One of the first signs of this

is loss of performance due to unnecessary network traffic resulting from developer blindness to locus of

execution. This can be prevented if each locus of execution is accessed through a facade9 . Facades will

be used in Focus; they are not shown in the last section’s diagram because they would reduce the

diagram’s clarity.

In its usual configuration, drb requires a single port to be opened though firewalls. Many firewall

administrators find this unacceptable, preferring new types of traffic to run though standard ports (which

arguably complicates monitoring and misrepresents the traffic). Port forwarding can redirect drb traffic

through standard ports, and DrbFire 10 can eliminate the need for extra ports through client firewalls.

XML-RPC and SOAP normally operate across ports that firewalls usually leave open. There are many

solutions to this problem; so as long as the transport layer is plug-able, firewalls should not be a serious

obstacle. Encryption of distributed changes, if present, would be part of this transport layer; it could be

used to protect the server and client from replay and person-in-the-middle attacks. Because several

people will be viewing the model, attacks against the model itself are probably not as serious as attempts

to execute arbitrary code. Tainting 11 can help defend against arbitrary code execution. Some computer

languages (such as Ruby) offer built-in support for tainting.

Change distribution could be part of sessions managed by the Session Initiation Protocol 12 (SIP), which

has become very popular. It’s used by many Voice Over IP (VOIP) and video conferencing products,

including Ekiga, Gizmo Project, and OpenWengo. El.323 13 (used by Ekiga and XMeeting) is a potential

competitor. Either of these protocols would provide for voice and facial video channels, at the expense

of considerable complexity. It will be far easier to let an external tool provide voice communications,

and facial video is not a high priority feature. Session management should be plug-able, to make it easy

to replace an initial simple custom component by a SIP or H.323 compatible solution.

8 http://raa.ruby-lang.org/project/druby

9 http://en.wikipedia.org/wiki/Facade_pattern

10 http://rubyforge.org/projects/drbfire

11 http://www.cs.virginia.edu/~an7s/publications/sec2005.pdf

12 http://www.packetizer.com/voip/sip/standards.html

13 http://www.packetizer.com/voip/h323/standards.html

4



.

*



GUI Toolkit

Focus will need to interact somehow with the operating system’s windows. There are lots of cross-

platform GUI toolkits. The following were evaluated:

• Fox (http://www.fox-toolkit.org/)

• wxWindows (http://www.wxwindows.org/)

• QT (http://www.trolltech.com/)

• Tk (http://tcl.sourceforge.net/)

Although Fox has been used at NIST to produce RSVP, OffspringViewer, and CEM Editor, QT was

selected for Focus. Fox was usable, but QT has better GUI construction tools, a supported open source

binding for Coin (SoQT), and widgets that more closely resemble native widgets. The QtRuby bindings

appear to be satisfactory. Also the licensing terms for the QT version 4 Windows libraries allow

distribution as part of an application delivered with a public domain license. Use of native widgets might

have made wxWindows attractive, but its Ruby bindings are poorly documented and incomplete. Tk has

no real advantage over the other toolkits, and its GUIs do not even attempt to resemble native widgets.

Renderer

OpenGL is a well known cross-platform 3D graphics rendering engine; NIST has used it in Hydra and in

the OffspringViewer. OpenGL is very procedural; rendering can be a rather complicated process. In

contrast, Openlnventor 14
is a higher level open-sourced object-oriented component, built on top of

OpenGL, that allows assembly of entire scenes from smaller 3D objects with rendering and other useful

behaviors. Coin is a popular, well supported, open source superset of Openlnventor. It cooperates nicely

with ARToolkit. One potential problem is that SoQT development is done with QT version 2. The

binding is compatible with the current QT 3, but may have problems with QT 4 (which has the more

appropriate license).

VTK 15
is another high level 3D graphics toolkit. It may well be even more advanced than Openlnventor,

but it was not fully investigated because Coin provides the required functionality and compatibility with

other components, such as ARToolkit, and because we already understand the OpenGL layer that Coin is

built upon. Lastly, some of the code in VTK is covered by patents, and it is not immediately obvious just

how essential this patented code would be to Focus.

14 The Inventor Mentor : Programming Object-Oriented 3D Graphics with Open Inventor, Release 2 by Josie

Wernecke, Open Inventor Architecture Group, Addison-Wesley Professional

15 http://public.kitware.comA/TK/index.php

5



.

J



The Irrlicht Engine (http://irrlicht.sourceforge.net/) is an interesting layer on top of your choice of

OpenGL, DirectX8, and DirectX9. We discovered it after we already made a commitment to Coin, and it

is not clear that Irrlicht is really ready for production development.

Tracker

OpenTracker was considered for tracking purposes. It wraps either:

• Virtual Reality Peripheral Network (http://www.cs.unc.edu/Research/vrpn/), which can obtain

information from about ten different tracking devices, or

• ARToolkit (http://www.hitl.washington.edu/artoolkit/), which tracks fiducials (graphical marking

symbols) seen by a camera.

Since a wrapper provides relatively little value, and Open Tracker proved difficult to get working, the

Focus project will communicate directly with tracking devices. Initially all tracking will be done with

ARToolkit. Head tracking will be done by calculation of the head’s position and orientation with respect

to a fixed fiducial. Hand tracking will be done by calculation of position and orientation of a fiducial

attached to a glove. Finger positions will be measured by a P5 Glove 16
,
which has open source drivers

for unix and Windows. The eMagin Z800 3D visor 17 contains a built in head tracking unit. An attempt

will be made to interface to this head tracking unit. This product is not yet on the market, so driver

compatibility has not yet been determined. The P5 Glove contains a hand position tracker which might

turn out to be of use, but initial experiments suggest that its range of motion is too limited.

Persistence

Models need to be saved between sessions. A shared repository could provide version control as well as

persistence. There are many choices for repository components. The main categories are relational

databases (such as MySQL 18
,
PostgreSQL 19

,
Berkeley DB 20

,
Firebird 21

,
and many others), hierarchical

databases (now largely fallen from favor), object databases (such as GemStone/S22
), and native XML

databases (such as eXist 23
).

16 http://www.videogamealliance.comA/GA/video_game/P5/P5_Specs.php

17 http://www.emagin.com/3dvisor/assets/eMaginz8003DvisorDS.pdf

18 http://www.mysql.com/

19 http://www.postgresql.org/

20 http://www.sleepycat.com/

21 http://firebird.sourceforge.net/

22 http://www.gemstone.com/products/smalltalk/index.php

23 http://exist.sourceforge.net/

6



'



Persistence is also required in the client, where it is used to cache the 3D description of Stereocons,

Avatars, and the modeling environment (world). It should not be necessary to exchange this kind of

information during a modeling session. Instead, when a client joins a modeling session, the timestamps

on this information should be checked and the information updated if necessary.

Because the performance of the persistence service is not expected to be crucial, and because there are so

many mature well-tested fallback options, it was decided to use familiar tools without further evaluation.

Focus will therefore start out with the fast and easy-to-use Madeleine24 object database. If maintenance

becomes a problem due to limited tools for inspection and versioning, Focus will be able to switch

painlessly to the Active Record25 object-relation mapper, with MySQL as a back end.

Metamodel

Several UML meta-models are available:

• Eclipse Modeling Framework (http://download.eclipse.org/tools/emf/scripts/home.php), formerly

known as the “XMI Toolkit”

• Sun Netbeans Metadata Repository (MDR, http://mdr.netbeans.org/)

• Novosoft UML Library (NSUML, http://nsuml.sourceforge.net/)

Ideally, these would make it easy to provide some level of interoperability with more traditional UML
tools. Unfortunately, XMI appears to be a quagmire: existing tools claiming XMI compliance are not

very good at model exchange, even when diagrams are not considered important. Focus will initially use

its own simpler meta-model.

Discovery

Linda26 provides a simple mechanism for service discovery and dependency injection (a way of

assembling loosely coupled objects, also known as “inversion of control”). Rinda27 is a Ruby

implementation of Linda which Focus will use. Loose coupling is one of the goals of Service Oriented

Architectures, which use extensive metadata (such as WSDLs) as part of the discovery process. Focus

will not use detailed metadata, only the names of interfaces (which will be taken to symbolically

represent all the other metadata). This kind of dynamic assembly is certainly not required to obtain the

necessary functionality, but the cost is low, and (by emphasizing interfaces) it will improve the long term

maintainability.

24 http://madeleine.sourceforge.net/

25 http://ar.rubyonrails.com/

26 Ahuja, Sudhir, Nicholas Carriero, and David Gelernter, "Linda and Friends," IEEE Computer, Aug. 1986

27 http://www.ruby-doc.org/stdlib/libdoc/rinda/rdoc/

7





Gesture Interpreter

Openlnventor provides “Manipulator” scene graph nodes that the user can interact with. Focus will use

some of these, but it would also be desirable to support gestures, which requires decoding hand and

finger motions into commands. This could be done by parsing tokens representing the motions. Parsers

are usually constructed by compiler-compilers such as Yacc, from a Backus-Naur form28 grammar. NIST

has ported to Ruby a Smalltalk implementation of a compiler-compiler, which Focus will use to generate

the gesture parser. A fallback approach will be to use neural networks to recognize gestures 29
.

Rule Engine

Inference engines (usually called Rule Engines) draw conclusions from presented facts. They are often

used to encode business rules, which helps factor the rapidly changing, domain expert maintained,

business rules out of programmer-maintained source code. Focus could benefit from rule factorization in

two areas. One is in validating commands and data. The other is in the meta-model. NIST has already

implemented in Ruby a forward chaining inference engine based on the Rete algorithm30
.

Command Interpreter

All changes made to the model will be brought about by the Command pattern31
,
through the

Commandlnterpreter component. These commands will be stored on a stack by the Commandlnterpreter,

so that an inverse operation can be applied whenever a change needs to be undone. The inverse operation

is also pushed onto the stack. When a redo is necessary, the inverse operation is popped from the stack,

and the command beneath it is re-executed. Each position in the stack corresponds to a slightly different

version of the model. It will be possible to label positions in the stack so that users will be able to roll

back to that version. This component will be written for Focus.

28 http://en.wikipedia.org/wiki/Backus-Naur_form

29 http://www.codeproject.com/cpp/gestureapp.asp

30 Charles Forgy, "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem", Artificial

Intelligence, 19, pp 17-37, 1982

31 Design Patterns, Elements of Reusable Object-Oriented Software, by Gamma, Helm, Johnson, and Vlissides





Glue
%

Somehow all of these components need to be interconnected. The selection of a programming language

is a very subjective task. Some people can’t imagine software development without strong typing; others

find it an intolerable impediment. Although we remain interested in other languages (particularly

Objective C), Focus will use the Ruby 32 language.

We have been using Ruby for about a year now with no major problems, and we have built up a

considerable code base. Ruby is well documented33
-
34 35

,
is cross-platform, and has a good selection of

libraries, primarily at http://raa.ruby-lang.org/ and http://rubyforge.org/. Ruby can interoperate with Java

through rjb 36 and JRuby 37
,
although we have not yet experimented with this capability. Ruby can also

interoperate with C and C++ through Swig38 . Swig is well documented and maintained, because it

supports Perl, Python, Tel, C#, Common Lisp, and Scheme, as well as Ruby. Our initial experiments with

Swig have been reasonably successful; we have not found any show-stoppers. Swig will be necessary to

produce Ruby interfaces for C and C++ libraries that do not already have Ruby interfaces. At this point,

that appears to be limited to Coin, ARToolkit, and tracking hardware drivers (the P5 glove and eMagin

head tracker, if it is cross platform and its headers are released).

Web

It would be convenient to deliver the entire Focus application automatically through a web browser. This

would seem to require wrapping Focus for interpretation by an existing browser plugin, such as the Java

or Flash plugins. Unfortunately, the current state of the art would unacceptably limit the user interface

and performance. Ruby does not yet have an equivalent to Java’s Applets, at least in part because Ruby

delegates user interface construction to libraries such as Fox and Qt. Ruby code could be accessed from

Java Applets through jrb or JRuby, probably with a large performance price. The Alph39 Flash-Ruby

bridge might come closer. Either way, large libraries (such as Coin) remain a problem. The best solution

would probably be a Ruby browser plugin that includes support for multiple GUI toolkits, and Coin.

That’s clearly outside of the current scope of Focus.

32 http://www.ruby-lang.org/en/

33 Programming Ruby, The Pragmatic Programmer’s Guide, Second Edition, Dave Thomas, Chad Fowler, and

Andy Hunt, Pragmatic Bookshelf, 2004

34 Ruby In A Nutshell, Yukihiro Matsumoto, O’Reilly, 2001

35 The Ruby Way, Hal Fulton, Sams, 2001

36 http://raa.ruby-lang.org/project/rjb/

37 http://jruby.sourceforge.net/

38 http://www.swig.org/

39 http://rubyforge.org/projects/alph/ and http://richkilmer.blogs.eom/ether/2004/1 0/alph_code_relea.html

9



'



V

Even though browser delivery is not yet practical for the Focus modeling use cases, it would be quite

satisfactory for the management use cases, which are not nearly as demanding. There are many ways to

create web applications. Two popular fast ways are OpenLaszlo40 and Ruby on Rails41 (also known

simply as Rails, or ROR). Rails is probably a better choice for Focus, since it is Ruby based. Rails is

well documented42 and supports Ajax43 . Other interesting Ruby web frameworks (all available on

Rubyforge) include IOWA, Arrow, Nitro, Labarynth / Borges, Cerise, and SWS.

Fitting It All Together

At application startup, services register themselves with Discovery. Consumers use Discovery to find the

services they need and register themselves with these services. These steps are repeated at every startup.

Every Session has one View on one Model, selected from the Repository. The client SceneGraph is

updated from the Server Repository (this is not shown in the diagram). The Tracker then begins tracking

user motions; it uses this information to pose the AvatarModel. The AvatarModel resides on the server,

because it updates the AvatarRepresentation (through the SceneGraph) for all of the Clients except the

source of the tracking information. Tracking information is then fed (possibly in modified/tokenized

form) into the Gesturelnterpreter. The Gesturelnterpreter parses the tracking information to discover

meaningful gestures, which it associates with Command objects. These Commands are submitted to the

Commandlnterpreter, which validates them with the RuleEngine. Some commands (such as an avatar

moving a hand which is grasping a Model element) are also fed directly from the AvatarModel to the

Commandlnterpreter. Other commands come from callbacks from Client Manipulators to

ManipulatorControllers and from user interaction with the Dashboard. The Dashboard displays flat

information that supplements the 3D interface; for example, it would have a tree listing Model

components, if that is not collapsed. Just about anything could be displayed here, which is why the

Display interface is shown as used by the Server itself, rather than some smaller component. If a

command is invalid, it is either silently ignored or displayed in the Dashboard, depending on the severity.

Valid Commands are pushed onto the Commandlnterpeter’s stack and executed.

Depending on the nature of Command, the Model might be updated (such as the introduction of a new

model element, which then inserts an appropriate representation into the SceneGraph), the Layout might

be modified for some ModelElement, the Session parameters might be updated, etc. The Command
might even act on Commandlnterpreter itself, if it specifies an undo or redo operation. The model resides

in the server because it is shared by all the participants.

40 http://www.laszlosystems.com/developers/

41 http://www.rubyonrails.org/

42 http://www.pragmaticprogrammer.com/titles/rails/index.html

43 http://en.wikipedia.org/wiki/Ajax_%28programming%29

10



'

'



V

Figure 1: A UML Component Diagram

11





Revision History
%

Version Date Developer Change

0.1 4/23/05 AFG First cut

0.2 5/18/05 AFG • Added brief description of Irrlicht Engine.

• Improved explanation of 24 fps minimum.

• Expanded 49B for P2P

• Corrected description of Coin

0.3 8/27/05 AFG • Added table of contents

• Created “Overview” section. Moved the last

paragraph of “Frameworks” to “Overview,” and

reworded

• Added neural network fallback for gesture

recognition

• Added JRuby to section on Ruby

• Added “Web” section

• Modified component diagram:

• Changed Undo to Commandlnterpreter, to

match previously articulated responsibilities

• Replaced Stereocon by Representation (which

includes Path and PathStyle (for Edges, such as

Associations) and OrentedLocation and

Stereocon (for Vertices such as Classes).

• Changed AvatarView to AvatarRepresentation

(for consistency)

• Removed NodeCache (which is just a persistent

SceneGraph)

• Split Query into RuleQuery and

MetaModelQuery (which is performed

indirectly, through a RuleQuery)

• Removed Repository and Session from

diagram: they are important, but not for the

purposes of this diagram.

• Added client side Discovery service

0.4 3/29/06 AFG • Expanded intro per request by Jim St. Pierre.

• Added discussion of firewalls, tainting, SIP, H.323

12



•


